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1. Introduction

Speci�cation of trends in time series processes have been a long-standing topic since

early 1980s. A lot of signi�cant literatures which study trending variables have been accu-

mulated since early 1980s(Nelson and Kang, 1981; Nelson and Plosser, 1982; Perron, 1989;

Murray and Nelson, 2000; Perron and Wada, 2009, to name a few). For many macroeco-

nomic time series variables, stochastic trends and deterministic trends are known as the

two most typical types of trends. Thus, a good deal of detrending methods have also been

used in practce, which includes time trend removal, �rst-di¤erencing, fracional di¤erencing,

Hodrick-Prescott �ltering and various smoothing methods. As correct detrending cannot

be emphasized enough in practical researches, various testing procedures have been used

to identify the trends in time series context. As is widely knwon in practice, a list of test

statistics include conventional unit root tests of Augmented Dickey-Fuller(ADF) test, the

LM test by Kwiatkowski et al(1992), variance ratio tests by Breitung(2001) and so on.

Earlier literature have mainly focused on the e¤ects of misspeci�cation of trends on

the behavior of spectral densities, in terms of cyclical pattern of the trending time series

variables. Among them, Nelson and Kang(1981) study the e¤ect of false detrending on

the sample spectrums in the wide range of frequencies and indicates that true dynamics

of the variables could be distorted due to incorrect detrending. In this regard, many re-

searches clari�es the e¤ects of false detrending(e.g., Harvey and Jaeger, 1993; Canova, 1998,

Fleissing and Strauss, 1999, Aadland, 2005). As a recent work, we note that Dagum and

Giannerini(2006) investigate the e¤ects of misspeci�cation of trends on various hypothesis

tests, including tests for stationarity and tests for linearity. Ashley and Verbrugge(2006)

also study how the parameter estimates in linear models are vulnerable to the way of de-

trending. The above mentioned �ndings draws attention to the possibility of distortion of

true dynamics of the time series variables due to incorrect detrending.

In this work, we bring attention to the correlation in the frequency domain, as a useful

measure of comovement of stationary time series variables. Speci�cally, we employ the

dynamic correlation proposed by Croux et al(2001), which is the real part of well-known

coherency measure. This model-free comovement measure provides useful implications in

the context of economic forecasting along with the analysis of pro- and counter- cyclical

properties of major indicators and risk management for early warning system for economic
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risks. Given this, we study how the dynamic correlation measure is a¤ected by detrending

methods, which is not investigated in a formal manner. While we pay attention to sto-

chastic and deterministic trends, two possible cases of incorrect detrending are analyzed

theoretically and numerically. In the section 2, the limiting form of dynamic correlations

under correct and incorrect detrending is provided. Then, in the section 3, some numerical

studies are given to see the e¤ects of detrending on the behavior of dynamic correlations.

2. E¤ects of detrending on Dynamic Correlations

The dynamic correlation(DC hereafter), proposed by Croux et al(2001) is the real part

of the coherency between the two stationary time series variables. While the coherency or

squared coherency has been used for long decades, the DC has its own advantage including

computational merit. Simply put, the DC is a correlation measure de�ned in the frequency

domain as follows,

�xy(�) =
fxy(�)p
fx(�)fy(�)

; for � 2 [��; �]; (1)

where fxy(�) is the cospectrum, which equals to the real part of the cross spectral den-

sity, and fx(�) and fy(�) are the auto-spectral densities of covariance-stationary x and y;

respectively(e.g., Priestley, 1981).

In our work, we consider trends-stochastic trends and deterministic trends- and the

e¤ect of trend speci�cation on the behavior of DC. The e¤ect of detrending on the DC is

rarely covered in Croux et al(2001). Depending the type of detrending method, the DC

is expected to generate di¤erent implications. Thus, we focus on the e¤ect of detrending

on the correlations in the frequency domain, which also draws attention in the area of

practical researches using time series variables. To be concrete, we consider two cases of

false detrending. The �rst one is to specify the trends as stochastic trends when the true

process is trend stationary. In this case, incorrect detrending arises when one takes the

�rst-di¤erence the series. The second case is the converse, where one gets the time removal

for the series when the true process contains the stochastic trends.

We �rst consider the case that true processes consist of stationary components around

the deterministic time trend. Moreover, we allow stationary innovations to have a linear
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structures as in Phillips and Solo(1992). It helps construct the limiting forms of DC under

correct and incorrect detrending. Also, richer setup for the data generating processes(DGP)

is provided, compared to Dagum and Giannerini(2006). We formally put the following

assumption,

Assumption 1: Bivariate series qt = (zt; wt)0 follows trend stationary processes,

(i) qt = �+ �t+ et;

where � = (�1; �2)0; � = (� 1; � 2)0; and et = (e1t; e2t)0 is a linear process given by

(ii) et = �(L)"t =
P1

k=0 �k"t�j =
P1

k=0

 
ak bk

ck dk

! 
"1t�k

"2t�k

!
;

"t = ("1t; "2t)
0 is iid:(0; �2I2);P1

k=0 k
�jj�kjj < 1; for � � 1 and jj�kjj = [

P
k j�

i;j
k j2]1=2:

The linear structure of innovations given in the assumption is standard where long-run

and short-run components are compactly expressed through well-known Beveridge-Nelson

decomposition techniques(Phillips and Solo(1992)).

In relation to the variance and covariance structures of linear processes given above, we

�rst de�ne the following quantities.

f 11j (L) =
P1

k=0 akak�jL
k; f 12j (L) =

P1
k=0 bkbk�jL

k; (2)

f 21j (L) =
P1

k=0 ckck�jL
k; f 22j (L) =

P1
k=0 dkdk�jL

k;

gj(L) =
P1

k=0 akck�jL
k; hj(L) =

P1
k=0 bkdk�jL

k:

Under the linear structure of the innovations, we can derive the explicit form of the LDC,

as follows. The following theorem states the e¤ects of correct and incorrect detrending on

the behavior of the DC.

Theorem 1: Under the assumption 1, (i) the dynamic correlation for time-detrended

qt equals to

��xy(�) =
f �12(�)p
f �1 (�)f

�
2 (�)

;
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where

f �1 (�) =
P1

j=�1(f
11
j (1) + f

12
j (1)) cos(j�);

f �2 (�) =
P1

j=�1(f
21
j (1) + f

22
j (1)) cos(j�);

f �12(�) =
P1

j=�1(gj(1) + hj(1)) cos(j�):

(ii) the dynamic correlation for �rst-di¤erenced �qt equals to

�xy(�) =
f12(�)p
f1(�)f2(�)

;

where

f1(�) =
P1

j=�1 f1j cos(j�);

f2(�) =
P1

j=�1 f2j cos(j�);

f12(�) =
P1

j=�1 f12j cos(j�);

with

f1j = 2(f 11j (1) + f
12
j (1))� f 11j�1(1)� f 11j+1(1)� f 12j�1(1)� f 12j+1(1);

f2j = 2(f 21j (1) + f
22
j (1))� f 21j�1(1)� f 21j+1(1)� f 22j�1(1)� f 22j+1(1);

f12j = gj(1) + hj(1) + 2(gj�1(1) + hj�1(1)):

The part (i) refers to the correct speci�cation of trend, whereas the part (ii) arises from

misspeci�cation of trend. We only prove the part(ii).

[proof of Theorem 1] The proof is based on Phillips and Solo(1992, eq.28) and Maynard

and Shimotsu(2009). For the di¤erenced processes, the auto-covariances are written as

E(�"t�"t�r) = ��2; for r 6= 0; and for jrj > 1; E(�"t�"t�r) = 0: Then, we obtain

E(�e1t�e1t�j) = f 11j (1)E(�"
2
1t) +

P1
r=1[f

11
j�r(1)E(�"1t�"1t�r) + f

11
j+r(1)E(�"1t�"1t+r)

+f 12j (1)E(�"
2
2t) +

P1
r=1[f

12
j�r(1)E(�"2t�"2t�r) + f

12
j+r(1)E(�"2t�"2t+r)

= �2[2(f 11j (1) + f
12
j (1))� f 11j�1(1)� f 11j+1(1)� f 12j�1(1)� f 12j+1(1):

Similarly, we get

E(�e2t�e2t�j) = �
2[2(f 21j (1) + f

22
j (1))� f 21j�1(1)� f 21j+1(1)� f 22j�1(1)� f 22j+1(1):
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For the cross covariance and the cospectrum, we employ the results in Maynard and

Shimotsu(2009, lemma 13) to get

E(�e1t�e2t�j) = �
2[gj(1) + hj(1) + 2(gj�1(1) + hj�1(1))]:

The results of the part (ii) come from the case that trend stationary processes are

�rst-di¤erenced, which entail over-di¤erenced series. This type of misspeci�cation is also

known as the moving average(MA) unit root(Saikkonen and Luukkonen, 1993). Since

over-di¤erenced series generate additional correlations, the forms of auto-spectrum and

cospectrum become more complicated than correctly detrended case. As a result, the true

value of DC ��xy(�) is not equal to the �xy(�), given by incorrectly detrended variables.

To further get an insight for the MA unit root problem in terms of the DC in the

frequency domain, consider a simple example that a0 = b0 = 1 and ak = bk = 0 for

k > 0 in the process of et: It then follows that E(�e21t) = 2�2; and E(�e1t�e1t�1) =

E(�e1t�e1t+1) = ��2: Then, the auto-spectral density of e1t becomes

f1(�) = 2(1� cos(�)): (3)

It is noted that degeneracy arises at the zero frequency, i.e., f1(0) = 0: Thus, false detrend-

ing invalidates the DC in the long-run (Lee(2017)).

3. Numerical Studies

[in progress]

In this section, we conduct a small set of numerical studies to see the e¤ect of correct and

incorrect detrending on the LDC. In doing so, we use kernel-based nonparametric estimation

for the auto-spectral density and cospectrum. As is well-known in the econometrics context,

the auto-spectral densities of covariance-stationary variable x is given by

f̂x(0) = R̂x(0) + 2
PT�1

j=1 k(j=M)R̂x(j); (4)

where k is a kernel function, M is the lag truncation number(bandwidth) and the sample

variances are given by

R̂x(j) = T
�1PT

t=jjj+1(xt � x)(xt�jjj � x);
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with x is the sample mean of x: Also, the cospectrum estimator is given by

f̂xy(0) =
PT�1

j=1�T k(j=M)R̂xy(j) (5)

= R̂xy(0) +
PT�1

j=1 k(j=M)R̂xy(j) +
PT�1

j=1 k(j=M)R̂xy(�j);

where the sample cross covariance equals to

R̂xy(j) = T
�1PT

t=jjj+1(xt � x)(yt�jjj � y);

and cross covariance is not symmetric in j:

The bandwidth M is required to satisfy the condition that M ! 1 and M=T ! 0;

which guarantees consistency of the estimators(e.g., Priestley, 1981, Andrews 1991, Newey

andWest 1994). Both parametric and nonparametric bandwidth choice rules can be consid-

ered in practice, in line with the context of heteroskedasticity and autocorrelation consistent

(HAC) covariance matrix estimation. We then avoid further discussion on the choice of

bandwidths in this work.

Firstly, we consider a linear time trend process as the data generating process. Let

qt = (zt; wt)
0
follow

DGP 1:

 
zt

wt

!
=

 
�1

�2

!
+

 
�1t

�2t

!
+

 
�11 �12

�12 �22

! 
"1t

"2t

!
;

where the parameters are set as

�1 = �2 = 0; �1 = �2 = 0:1; �11 = �22 = 0:2; �12 = 0:05:

We estimate correctly detrended and incorrectly �rst-di¤erenced DCs. The plot is given

in Figure 1. It is observed that at small frequencies of 0 � � < 0:4; the �rst-di¤erenced DC
gets smaller than the time-removed DC, implying that �rst-di¤erencing under-estimates the

long-run correlations. If the series are monthly observations, the frequency � = 0:4 roughly

corresponds to 15 months. On the other hand, after � > 2; which is associated with short-

run dynamics, �rst-di¤erencing, unlike the case of long-run correlations, over-estimates the

correlations between the two variables.

Next, in order to study the converse case, we consider unit processes for qt;

DGP 2: qt = D0
t� + qt�1 + vt; (6)
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where Dt = (1; t)0; and vt = (v1t; v2t)
0 with E(v1t) = E(v2t) = 0; E(v1tv2t) = !12 and

E(v1tv2s) = 0 for t 6= s:
The DGP is rather simple, as it does not incorporate su¢ cient number of serial corre-

lations of innovation processes. Thus, it is worthwhile to extend to more sophisticated and

realistic design and investigate the e¤ect of detrending on the patterns of DC.

4. Empirical Studies

[in progress].

5. Conclusion

[in progress]
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